Surface and Interface Science with

Low Energy Electron Microscopy & Nano-Optics

Adrian Gozar

Department of Applied Physics Energy Sciences Institute – Yale West Campus

(https://nanoscaleimaging.yale.edu)

Low Energy Electron Microscopy (LEEM)

- LEEM uses low energy (0 100 eV) elastically scattered electrons for microscopy & diffraction
 - Lateral resolution \rightarrow 10 nm
 - Field of View \rightarrow 1.5 to 150 μm ($\mu\text{-LEED})$
 - Sample size $\rightarrow \phi = 7 12 \text{ mm}$
 - E-beam source up to 3500 °C
 - Sample temperature up to 1600 °C
 - Gas dosing and prep chamber with sputtering/annealing capabilities

sample holder

- Real-time monitoring of surface dynamics or film growth (watch our movies online !)
 - Example: synthesis and characterization of large-area single crystals of borophene on Cu(111) surfaces (FOV = 10 μ m)

Wu et al., Nature Nanotechnology (2018), in press

Nano-Optics: Beyond Diffraction with Near-Fields

> Our AFM-based Cryogenic Scanning Near-Field Optical Microscope (SNOM) for determination of the complex conductivity at the nano-scale

- Spatial resolution $\rightarrow \sim 20$ nm (given by the size of the AFM tip)
- Temperature range → 22 K 300 K
- Optical sources \rightarrow mid-IR ($\lambda = 9 11 \ \mu m$; 110 140 meV) THz ($\lambda = 0.5 - 0.3$ mm; 600 - 850 GHz)
- Depth probing range \rightarrow 10's of nm (material dependent) for sub-surface sensitivity

Near-Field Studies of Surfaces and Interfaces

- Studies of 2D materials
 - Surface plasmon interferometry in graphene: plasmon scattering at grain boundaries (optics with finite momentum transfer)

- Device characterization
 - Optical nanoscopy of a high-T_c cuprate nano-constriction device patterned by He ion beams

SNOM studies of Surfaces and Interfaces

> Superconductivity in the $La_{2-x}Sr_xCuO_4$ (LSCO) high-T_c cuprate material

- We can perform infrared and THz optical nanoscopy of superconucting devices
- Low temperature data in the THz range enables detection of superconducting fluctuations in a cuprate wire (13 nm thick and 20 μm wide)

Sample: Hall bar pattern of LSCO grown on LaSrAlO₄ (LSAO) substrate – A. Bollinger & I. Bozovic, Brookhaven

- > Needed: devices with high- T_c superconductors (SC)
 - Encapsulated $Bi_2Sr_2CaCu_2O_{8+\delta}$ (BSCCO) $T_c \sim 90$ K
 - It cleaves easily but the surface is sensitive to ambient conditions

- > Why do we want such devices?
 - detection of superfluid polaritons
 - superconductivity in ultra-thin films and nano-wires
 - inhomogeneous superconductors