Jack Harris, Department of Physics, Yale University

(Many types of) quantum sensors in a nutshell:

detects quanta of "c": single quanta resolution (PMT) or time-averaged flux of quanta (photodiode)

- Quantity of interest is encoded in the state of system "**b**": $|\psi_b\rangle = \sum c_n |n\rangle_b$ "" photons in mode b"
- In general, we cannot make a measurement that reveals $\ket{\psi_b}$ (i.e., all the c_n)
- Most measurements return a single number (project |Ψ_b) onto the measurement basis, chose an eigenvalue from a random distribution specified by the c_n).
- This process changes $\ket{arphi_b}$ (measurement back-action)
- Usually this process is accomplished via an auxiliary system "a" that scatters photons from a waveguide "c"
- Given all of this, what is the SNR for determining the quantity of interest? What arrangements optimize this?

Optomechanical quantum sensors

Jack Harris, Department of Physics, Yale University

Detection of "c" photons w/ photodiode (quantity of interest: is there a phonon in the LHe?):

Next steps:

Replace photodiode with PMT Improved performance via levitated superfluid sample

Key Instrumentation Requirements (100% selfish perspective):

- New physical insights regarding measurement and control processes (QND, quantum control, decoherence-free spaces, etc.)
- Advanced nanofab for electronic, mechanical, and optical components
- Optical photon number-resolving detectors (not PMTs!!!)
- Feedback & classical control
- Affordable and reliable cryogenics